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SUMMARY  (177 words) (200 words max) 
Everyone's walking style is unique, and it has been shown that both humans and computers are very good at 
recognising known gait patterns. It is therefore unsurprising that dynamic foot pressure patterns, which indirectly 
reflect the accelerations of all body parts, are also unique, and that previous studies have achieved moderate-to-
high classification rates using foot pressure variables. However, these studies are limited by small sample sizes 
(N<30), moderate classification rates (CR=~90%), or both. Here we show, using relatively simple image 
processing and feature extraction, that dynamic foot pressures can be used to identify N=104 subjects with a CR 
of 99.6%. Our key innovation was improved and automated spatial alignment which, by itself, improved CR to 
over 98%, a finding that pointedly emphasises inter-subject pressure pattern uniqueness. We also found that 
automated dimensionality reduction invariably improved CRs. Since dynamic pressure data are immediately 
usable, with little or no preprocessing required, and since they may be collected discreetly during uninterrupted 
gait using in-floor systems, foot pressure-based identification appears to have wide potential for both the security 
and health industries. 
 
 
 
 
 
MEDIA SUMMARY   (98 words) (100 words max) 
Everyone's walking style is unique, and camera- and force-based systems are excellent at recognising known gait 
patterns. Here we show that foot pressure patterns can also be recognised, with relatively simple data processing, 
with an accuracy of 99.6% (104 subjects). The key processing step was spatial alignment which, by itself, 
improved accuracy to over 98%. Since foot pressure devices can be discreetly installed in the floor and are, in 
general, robust to multi-subject environments because two feet cannot be in the same place at the same time, foot 
pressure-based identification appears to have strong potential for security applications. 
 
 
 
 
 



MAIN TEXT  (6971 words) 
(limit:  2500-8000 words) 

 
 
1.  INTRODUCTION 
When walking our feet interact with the ground in a stereotypical fashion: heel-strike, roll to the forefoot, then 
push-off with the distal forefoot and toes [1] (Fig.1a). This process takes about 0.7 s when walking at normal 
speeds of about 1.2 m/s. Is it possible that, within these stereotypical constraints, all individuals interact with the 
ground uniquely? 
 
Based on the gait recognition literature this seems plausible: individuals move their bodies and limbs in highly 
unique and highly repeatable patterns [2], and camera-based computer systems can be trained to recognise these 
patterns [3], even in adverse conditions such as poor lighting and brief exposure [4]. We would therefore expect 
these highly unique movement patterns to be reflected, to a certain extent, in our mechanical interaction with the 
ground, and that computers could be similarly trained to recognise gait patterns from floor-based sensors. Indeed 
floor-based gait recognition has already been highly successful. Recent examples include use of ground reaction 
force (GRF) trajectories, wavelet decomposition and fuzzy set-based feature extraction to recognise individuals 
with classification rates (CR) of 97% [5] and 99% [6]. 
 
While both camera-based and GRF-based gait recognition have been widely successful, both also have certain 
practical limitations. Camera systems must overcome environmental noise, perspective, and other 3D calibration 
problems, which state-of-the-art systems can do impressively, but with only moderate accuracy (74%) [7]. Force 
plate-systems must be quite large, at least 0.5 m long for full foot contact during non-targeted gait, but multiple 
feet mustn't contact the plate at the same time, meaning that force plates cannot be positioned arbitrarily and also 
that they cannot be used in multi-subject environments. 
 
An alternative is plantar pressure imaging (PPI) [8]. PPI systems typically consist of an array of hundreds or 
thousands of pressure-sensitive sensors which are capable of characterising plantar pressure distributions at 
spatial and temporal resolutions on the order of 5 mm and 100 Hz, respectively. There are a variety of PPI 
technologies [8], but in their final form most systems are thin, flat, relatively rigid boards that can be embedded 
in the floor to be flush with the walking surface. PPI systems do not suffer from environmental noise because the 
foot can be very easily isolated from the environment using low-pressure thresholding. Even though an 
individual may walk over a PPI plate at arbitrary angles, PPI systems also do not suffer from perspective 
problems because foot images may be spatially aligned using automated registration techniques [9,10]. Finally, 
high spatial and temporal resolutions mean that PPI systems can be used in multi-subject environments as all 
footsteps are, by nature, spatiotemporally isolated.  
 
PPIs are qualitatively highly unique amongst different subjects (Fig.2), and PPI-based biometric identification 
has consequently also had varying degrees of success (Appendix A). Most of these studies report moderate 
accuracy (80-85%), and we are aware of only four that report accuracies greater than 90% for sample sizes of at 
least ten subjects: [11] – 98.6%, [12] – 96.0%, [13] – 93.1%, [14] – 92.3%. However, the maximum number of 
subjects tested in these studies was eleven, and in a variety of pilot tests we were unable to reproduce the best of 
these  results  [11],  perhaps  partly  because  we  were  unable  to  resolve  certain  ambiguities  in  the  authors’  algorithm  
descriptions. Only one study examined more than 11 subjects [15] (N=30), but accuracy was notably lower 
(86.1%) than a previous study by the same group with fewer subjects: [13] – 93.1% (N=10). To date high 
accuracies on samples notably larger than N=10 have only been achieved using complimentary information like 
high-resolution skin prints [16] – 99% (N=32) or 3D foot sole shape [17]– 98.7% (N=30), information which 
cannot be readily obtained during uninterrupted gait because of lengthy scanning durations. 
 
Of the purely PPI studies, it is notable that many have employed spatial normalisation procedures; since the foot 
may adopt an arbitrary posture with respect to the PPI device, it seems logical to compensate for arbitrary 
postures using spatial normalisation. However, we note that most of these studies employed decorrelation  
(Appendix A), or equivalently: principal axis alignment [18], an approach which has been shown to yield much 



poorer alignment than optimisation-based alignment procedures [10]. It is therefore conceivable that improved 
spatial alignment would yield improved biometric identification. It is also notable that previous PPI studies used 
a variety of pre-selected features to be extracted from the raw data (Fig.1), but none, to our knowledge, has 
conducted a systematic evaluation of the relative effectiveness of different features. The purposes of this study 
were thus: (1) to explore the feasibility of PPI-based gait recognition on a larger sample of subjects (N>100), (2) 
to systematically compare a variety of spatial alignment procedures, and (3) to systematically compare a variety 
of features and feature extraction procedures.  
 
 
 

 
2.  METHODS 
 
2.1  Data 
Plantar pressure data were collected from 104 healthy individuals at the University of Münster (Table 1). These 
data were previously used to compute a healthy 'average' pressure distribution [19]. Data were recorded for 1.0 s 
at 50 Hz using an EMED ST4 system (resolution: 5 mm) (Novel GmbH, Munich, Germany). Each subject 
performed a total of ten trials of self-paced walking, five for each foot, yielding a total of 1040 3D (x, y, time) 
images  (Fig.1a).  ‘Follow-up’  data  from  ten  of  these  subjects  were  collected  separately  (Table  1);;  these  data  were  
obtained up to five years prior to the main data collection sessions. Prior to participation all subjects provided 
informed consent according to the policies of the University of Münster. 
 
The left- and right-foot images were examined separately after finding that single-foot analyses yielded 
sufficiently high performance. This is justifiable, we believe, because (i) the literature shows that lower limb 
dominance is poorly defined [20], (ii) naturally occurring gait asymmetries tend to load left and right feet 
differently [21], and (iii) in post hoc analyses we found no systematic left-right asymmetries amongst subjects. 
We may thus justifiably regard the left- and right-foot datasets as essentially independent, at least for the 
purposes of validating our methods on the population from which the present subjects were drawn.    
 
 
 
2.2  Image alignment 
Images were spatially padded by adding at least 1 cm of zero pressure rows/columns to the foot periphery. They 
were then temporally aligned so that the first (x,y) time slice corresponded to initial heel-strike. Following 
padding all images were contained in a 65 × 29 × 50 voxel grid (x, y, time) (94,250 voxels) of which an average 
of 8,291 voxels (8.8%) were non-zero for any given trial; across all subjects and trials 33,143 (35.2%) were non-
zero. The raw data were quite smooth (Fig.1a,b) so images were neither spatially nor temporally filtered. 
 
Subsequently three categories of spatial alignment procedures were tested (Table 2). The first: 'None' performed 
no alignment, passing raw images directly to feature extraction (below). The second: 'Decorrelation' performed a 
principal axis transformation to centre the pressure-weighted foot centroid and to vertically align the foot's minor 
principal axis. The third: 'Registration' [22] utilised a rapid frequency-based alignment procedure [9,23] to 
automatically align a given image to a foot template. The goal of the algorithm was to maximise cross-
correlation, first in the frequency domain, to optimise horizontal and vertical foot translations, and then in the 
log-polar domain, to optimise foot rotation. Example data (Fig.3) reveal that both Decorrelation and Registration 
tended to improve alignment, although registration performed qualitatively better, agreeing with previous results 
[10].   
 
For Registration, seven template images were tested including: (i) the morphologically average contralateral foot 
from the Münster data sample (RegMunCont) [19], (ii) an average foot from a separate study, a separate 
laboratory, and collected with a different manufacturer's equipment [10], and (iii-vii) average feet of the 
chronologically first five subjects from the cited study. Bilinear interpolation was used for all image 
transformations.  



 
 
 
2.3  Pre-features 
Since desktop computing memory was inadequate to submit the 3D images directly to classification routines, 
and since classifiers generally perform more poorly with increasing dimensionality [24], the images were first 
reduced to ten different 2D spatial (x,y) 'pre-features' by extracting specific characteristics of each pixel time 
series (Fig.1c,d) (Table 3); we refer to these as 'pre-features' to distinguish them from the final features upon 
which classification was based; the final features were extracted automatically from the pre-features using 
various dimensionality reduction techniques (Sect. 2.4). 
 
Specific pre-features  included  those  commonly  used  in  the  plantar  pressure  literature:  ‘peak  pressure’  or  
equivalently  ‘maximum  pressure’,  or  equivalently  ‘100th percentile  pressure’  (P100).  This  2D  variable  represents  
the maximum pressure experienced by each part of the foot over the course of stance, and is by far the most 
common variable seen in the plantar pressure literature, often used to check for plantar tissue overloading [8]. 
Other common variables analysed included: the pressure-time integral (PTI), contact duration (CD), and time-to-
maximum (Tmax) [8]. The pressure-time integral represents the total loading during stance; areas of the foot 
with brief, high-pressure impulses may have a similar PTI value to areas with long, low-pressure impulses. Since 
the precise variable(s) regulating plantar tissue breakdown are unknown, PTI, which quantifies loading in a 
different way, has also been commonly analysed in the literature. CD is a PTI-like variable which considers only 
loading duration, not magnitude, and Tmax represents yet another loading feature: loading rate (with respect to 
initial heel contact). The point is that PPI data are complex, and that no single 2D variable can characterise the 
3D loading profile.  
 
In addition to these common variables, we also tested one that is less commonly used: time-to-first contact 
(Tfirst) [25] and others that, to our knowledge, have not been previously reported the 90th, 80th, 70th, 60th, and 
50th percentiles (P90, P80, P70, P60, P50). Tfirst, like Tmax, represents a specific loading-rate feature: the speed 
with which one transitions to different parts of the foot. This is less common than the aforementioned variables, 
most likely because load magnitude is quite low at first-contact. The percentile variables, we believed, were also 
worth testing, partly because P100 is a maximum function, and therefore may be more susceptible to sensor 
noise than other percentiles, and partly to check if there was a systematic effect on the ultimate results as one 
considers relatively higher pressures. All aforementioned pre-features were tested either individually or in pairs, 
by vectorising then stacking 2D images. Since the full image time-series were too large for practical testing, 2D 
feature-pairing permitted inclusion of additional dynamic characteristics. 
 

 
 
2.4  Dimensionality reduction 
The second feature extraction phase used automated dimensionality reduction to further reduce the pre-features 
to a dimensionality most effective for classification. Reduction algorithms included (Table 4): Laplacian 
eigenmaps (LE) [26], normalised spectral clustering with a symmetric Laplacian (NCSL) [26], kernel principal 
component analysis (KPCA) [27], and locally linear embedding (LLE) [28].  Following semi-systematic analysis 
(Sect. 3.1) we found that reduction to a dimensionality of 70 (from 1885 dimensions for single pre-features and 
3770 dimensions for paired pre-features) worked well for these data. Other reduction parameters were manually 
tuned for the left foot using 104-fold cross-validation (Sect. 2.5), and final performance was verified on the left-
foot dataset and also with a separate (leave-one-out) validation scheme. As a baseline comparison we also used 
no dimensionality reduction, submitting pre-features directly to classification. 
 
 
2.5  Classification 
Classification of the final features was performed using nearest-neighbour (1NN) classification; this is the 
simplest possible classification scheme, detecting only the image most similar to the test image (i.e. minimum 
Euclidian distance) in reduced feature space. Although simple, 1NN was selected to emphasise the power of 



automated dimensionality reduction for biometric-relevant feature extraction. Classifier performance was 
validated using 104-fold cross-validation (104-CV) and separately using leave-one-out cross-validation to ensure 
that 104-CV was not biased. We also employed a stratified 5-CV, wherein the first image of each subject was 
retained for testing, while the remaining four were used for training, and then repeated for the second images, 
third images, etc. This scheme (with a testing/training ratio of 25%) was adopted to ensure that the low 
testing/training ratio of 0.97 % in 104-CV was not a biasing factor. 
 
 
 
2.6  Algorithm evaluation 
A full-factorial evaluation of all aforementioned factors (alignment, pre-features, dimensionality reduction 
techniques, classification algorithms ) would have required a prohibitively large number of iterative tests so we 
narrowed our focus by conducting semi-factorial evaluations in an ad hoc manner. For example, if variable P100 
was found to perform generally better than other pre-features, then we used P100 to explore different alignment 
procedures, and the resulting best alignment procedures were used to re-test all pre-features. While incomplete, 
this approach proved to yield highly accurate classification performance. 
 
Statistical hypothesis testing was conducted on a variety of classification-relevant metrics in an ad hoc manner 
as context demanded. For example, a paired-sample t test was used to test whether the difference between the 
None and Decorrelation alignment methods was different from zero; the motivation for this particular analysis 
was to examine whether Decorrelation, the predominant alignment procedure in the literature (Appendix A), is a 
better alignment choice than None. All aforementioned data processing was conducted in Matlab 7.10 (The 
MathWorks, Natick, MA, USA), and all figures were created using Matplotlib 0.99 as released with the 
Enthought Python Distribution 5.0 (Enthought Inc., Austin, TX, USA). 
 
 
 
3.  RESULTS 
 
3.1  Basic results  
With no image processing at all (except for image padding) nearest-neighbour classification identified 
individuals with an accuracy of 90.8% using the P100 pre-feature (Fig.4). Decorrelation surprisingly yielded a 
slightly lower average classification rate (CR) of 90.2%, while registration markedly increased the average CR 
to 98.9%. Dimensionality reduction also tended to improve CRs (Fig.4), albeit to a lesser extent than 
registration. 
 
Across both feet the best-performing embedding dimension was 70 (Fig.5). Using this dimensionality, and 
following a systematic, semi-factorial study of the different alignment algorithms, pre-features, and 
dimensionality reduction schemes (Tables 5,6), the highest CR we were able to achieve in a single foot was 
99.8% (519/520 correctly classified images). This was achieved on the right foot using RegMunCont alignment, 
the combined P100 and P80 pre-features, and LLE dimensionality reduction. For this set of parameters the left 
foot CR was 99.4% (517/520). Our semi-factorial analyses and manual parameter tuning were found to be 
unbiased as leave-one-out cross validation (Table 6b), as well as validation on the left foot yielded practically 
identical results (Table 6a). Additionally, we found that the low testing/training ratio of 0.97% in our validation 
scheme was not a biasing factor, as a 5-CV scheme (with a testing/training ratio of 25%) yielded CRs of 99.4% 
in both the left and right feet. 
 
 
3.2   Follow-up dataset 
Using the aforementioned 'best' parameters, CRs for the left and right feet were 98% (49/50) and 90% (45/50), 
respectively, for the ten-subject follow-up dataset (Fig.6a,b). We note, however, that one of the follow-up 
subjects had significantly higher right-foot metatarsal pressures in the 2007 'follow-up' trials than in the 2009 
'original' trials (Fig.6c) (p=0.005, two-sample t test on extracted regional data [8]), and this led to 4/5 



misclassifications for this subject's right foot. Upon questioning, this subject could not recall any orthopaedic 
condition that could explain the 2007-to-2009 metatarsal pressure difference. We also note that all five of this 
subject's left-foot follow-up  images  were  correctly  identified.  If  we  exclude  this  subject’s  right  foot  data  from  
follow-up analyses the CR across the nine remaining subjects would be 97.8% (44/45). 
 
Once the classifier was trained on the 520 images from the original dataset, each follow-up image was read from 
disk and classified in 2.8 and 12.5 ms, respectively, as tested on a desktop computer (2.93 GHz dual-core 
processor, 4 GB memory, USB 2.0 connection to hardware) and averaged across the 100 follow-up images. Even 
though data transfer delays between the pressure measurement system and PC are longer than reading from disk 
(~64 ms, pilot results), a single footstep could still likely be identified within 100 ms of toe-off in a real-time 
implementation. 
 
 
 
3.3  Decorrelation 
Decorrelation decreased the average CR by 3.4% and 3.6% for no-reduction and LLE-reduced data, 
respectively, across all pre-features (Table 5) and both feet. After correcting for (two) multiple comparisons with 
a Bonferroni threshold of p=0.025 (family-wise Type I error rate: α=0.05), paired t tests verified the significance 
of this decorrelation-induced CR drop (p<0.001 and p=0.004 for None and LLE, respectively). This finding was 
supported partially by root-mean-squared error (RMSE) results for the no-pre-processing, decorrelation, and 
registration (RegMunCont) conditions of:  22.4±7.5, 18.0±7.2, and 12.2±5.7 kPa, respectively (mean ± st.dev., 
computed with respect to the intra-subject mean foot). It was further supported by ANOVA on no-alignment vs. 
decorrelation MSE; a significant SUBJECT effect was found (p<0.001), but no significant DECORRELATION 
effect was found for either the entire time series (p=0.934) or the P100 pre-feature (p=0.339). A marginal FOOT 
effect was found for the time series data (p=0.070) but not for the P100 pre-feature (p=0.338); since our best-
performing classifier used only 2D pre-features (including P100) we may conclude that decorrelation's failure to 
reduce intra-subject MSE was similar in both feet. . In agreement with the present CR results (Fig.4), the present 
ANOVA results imply that decorrelation was not effective at reducing intra-subject variability. Therefore 
choosing decorrelation over no-alignment may not be statistically justified, in general, unless initial foot posture 
is highly variable. Indeed, over all tested parameter combinations registration invariably out-performed 
decorrelation. 
 
3.4  Foot shape vs. pressure distribution 
The best alignment and reduction schemes with a binary P100 pre-feature (i.e. a binary image defined by the 
inequality: P100>0) yielded CRs of 93.7% and 96.5% for the left and right feet, respectively. As compared with 
the continuous-pressure P100 pre-feature (Fig.1d) binary features reduced the CR by only 4.2%, suggesting that 
a large proportion of the present classification-relevant information was derivable simply from 5 mm-resolution 
foot shape. Nevertheless, in semi-factorial studies we were unable to achieve binary P100 performances greater 
than 97%, suggesting that pressure distribution information is necessary for optimal subject identification. 
 
 
 
 
4.  DISCUSSION 
 
 
4.1  Classification 
The fact that essentially no processing (except for zero padding) yielded CRs greater than 90% across 104 
subjects, as well as the currently best results of CR>99%, strongly suggest that PPI data contain high-quality 
biometric information. This inter-subject uniqueness could only have been in embodied in plantar foot shape, 
dynamic plantar pressure distribution, or both, as these constitute the only subject-specific information sources in 
PPI data. The present binary image results of CR=~95%, which were very similar to previous binary image 
results of CR=94.6% [16] clarified that foot shape itself constituted a substantial source of classification-relevant 



information in the current sample. Nevertheless, the original non-binary data pushed these CRs above 99%, 
suggesting that pressure patterns embody additional non-trivial inter-subject uniqueness.  
 
In agreement with reports of high day-to-day PPI reliability [29], follow-up testing was also highly successful, 
yielding CRs of ~98%, despite fairly extensive delays of up to five years between testing sessions. Together with 
the presently estimated processing times of less than 100 ms per footstep these CR results suggest that PPI-based 
biometric identification may be suitable for real-world security applications. 
 
Recent successes in PPI-based classification of healthy foot types [30], pathological state [31], and PPI-based 
fall detection [32] indicate that the current registration-based approach may also be useful for health-related 
applications. We hope to explore some of these applications in future work. 
 
 
 
4.2  Previous studies 
The current CR results are, to our knowledge, higher than previous purely PPI-based identification studies 
(Appendix A) except a previous five-subject study [33] (CR=100%). The best performing algorithm on a 
database of at least N=10 subjects was Jung et al. [11]: CR=98.6% (N=11), but a potential drawback to this 
study was that two steps were obtained on a short (80 cm) platform; given average foot lengths of 25.5 cm [34] 
and average stride lengths of 76 cm [35], subjects would have had to adopt unnaturally short strides to achieve 
two complete footfalls on the measurement platform. Regardless, Jung et al.'s results imply that a larger database 
of subjects may be identifiable even during unnatural or constrained gait. The remaining studies examined fewer 
than twelve subjects (except for [15]: CR=86.1%, N=32) and reported moderate CRs in the range 64-94%. 
 
The higher current CRs can only be explained, we believe, by better data quality (spatiotemporal resolution, 
accuracy, precision, etc.), better feature selection, or both. Some studies, for example, used PPI systems with 
considerably less spatial resolution [12, 36, 37] (~35 mm). Others used relatively low-dimensional features like 
~10-dimensional region of interest pressures [38] and ~100-dimensional centre of pressure (COP) trajectories 
[11,15,33,39-41]; this is contrasted with the current ~8000-dimensional pre-features. Thus compression of PPI 
data, either by sensor resolution or by lossy data reduction, likely sacrifices identification-relevant features.  
Automated dimensionality reduction, used also in previous investigations of biomechanical (kinematic) data 
[42,43], thus appears to be a more robust data compression tool. 
 
 
 
4.3 Spatial alignment 
Registration presently outperformed decorrelation over all tested parameter combinations, yielding CR 
improvements on the order of 10% despite moderately high pre-registration  CRs  of  85%  or  more.  Registration’s  
successes  are  somewhat  unsurprising  because  registration’s  explicit  goal  is  to  minimise a dissimilarity metric 
which, by definition, reduces intra-subject variability. Its successes are also consistent with previous reports that 
a variety of registration approaches both qualitatively and quantitatively out-perform decorrelation [10].  
 
It was more surprising that decorrelation performed worse than no spatial alignment in many cases. This can be 
partially explained by stereotypical foot postures adopted by subjects – particularly the angle of the foot's 
longitudinal axis with respect to progression direction [44]. Decorrelation removes this information because the 
foot becomes rotated to a 'vertical' posture. While registration to an arbitrary template would also remove some 
of this stereotypical posture information, registration achieves better intra-subject alignment [10], so postural 
information likely becomes less relevant once better alignment is achieved. Rather than registering to an 
arbitrary template, as was done currently, it would be interesting to test a registration scheme that iteratively 
registers a given PPI to a mean database image for each subject. This was not done currently because 
improvements would not be noticeable beyond the present CRs of 99.6%. 
 
As an aside we note that many previous PPI-based identification studies used decorrelation for spatial alignment 



[11,15,40,45]. Despite its prevalence in previous papers, the current results strongly suggest that decorrelation is 
a  poor  alignment  choice.  While  we  have  speculated  on  potential  mechanisms  for  decorrelation’s  poor  
performance (i.e. loss of stereotypical foot posture) it would be interesting to directly test this assertion by 
incorporating initial posture as an additional feature in a decorrelated dataset. However, since we had no reason 
to  expect  decorrelation’s  poor  performance  prior  to  the  present  results,  we  leave  this  hypothesis  for  future  work. 
 
We wish to emphasise that we do not believe that the current registration scheme [23] was particularly special in 
terms of generating higher CR; there are a plethora of registration algorithms in the literature [22], and indeed a 
variety of methods have been shown to yield similar results in plantar pressure data [10]. Furthermore, in post 
hoc analyses we employed a completely different registration scheme [10] and achieved similarly high, albeit 
slightly lower CRs of ~97.5%. The current algorithm was selected simply because it was fast and has worked 
well recently. To rule out a particular registration scheme as a limitation it would be prudent to evaluate other 
algorithms in future work. 
 
 
 
4.4  Feature extraction 
The best-performing single pre-features were P100, P90, P80 and PTI (Table 5), and the best pre-feature 
combination of P100,P80 only marginally improved ultimate CRs (Table 6). This gives anecdotal credence to 
the extensive use of P100 and PTI in the literature [8] as information-dense parameters. To our knowledge P90 
and P80 have not been previously examined. One explanation for the success of the P100,P80 combination is 
that this essentially represents a dynamic gradient, albeit a low-frequency one, and that this low-feature gradient 
also contains subject-specific information. However it does not explain why P100&P80 was better than 
P100&P90. Regardless, since the performances of the P80, P90, and P100 pre-features were all quite high, a 
systematic exploration of their differences would not be possible without more data. 
 
Moreso than particular pre-feature selections, and with the exception of KPCA, dimensionality reduction was 
found to invariably improve CR (Table 6), albeit to a smaller extent than registration. While the CR 
improvement was small it was nontrivial, pushing the average CR beyond what was achievable with raw-
spatially aligned pre-features. We may thus conclude that while certain pre-features perform very well, only with 
dimensionality reduction can optimum CR be achieved. In other words, there are classification-relevant patterns 
in the pre-features that cannot be extracted in an a priori manner. 
 
As an aside we note that the present percentile pre-features  (P90,  P80,  …)  were  computed  over  all  time  frames  
(Fig.1c), and are therefore dependent on both the duration of supra-zero pressure and the recording duration (1 
s). In post hoc analysis we also computed percentiles over contact duration, but we found little qualitative effect 
on the ultimate results: P100 was the best-performing percentile, and CR systematically reduced with percentile 
(Table 5). 
 
We also wish to restate that we presently did not conduct temporal normalisation (aside from heel-strike 
alignment). This was done deliberately, to give time-related features like contact duration (CD) and time-to-max 
(Tmax) the maximum chance find temporal differences amongst subjects; if there were indeed significant 
temporal differences amongst subjects these features would be expected to yield higher CRs than if the data were 
temporally normalised. However, the fact that CD and Tmax performed relatively poorly (Table 5) suggests that 
inter-subject temporal differences were not as important as the pressure-related differences. 
 
Finally, the present pre-feature list was incomplete. All 2D (x,y) pre-features the data were derived from the 
original 3D (x,y,time) image, but additional variables could have been analysed like the spatial pressure gradient 
[46] and the spatiotemporal (x,time) 100th percentile [31]. It may be informative to investigate such variables in 
future work. 
 
 
 



4.5  Limitations 
A major practical limitation of the current study is that we investigated only unshod walking. It is conceivable 
that shod walking considerably distorts classification-relevant pressure patterns and/or that subjects are not 
recognisable if they wear different shoes. A second key limitation of this study is that only natural self-paced 
walking data were collected; PPI data are known to change with walking speed [47], fatigue [48], and a variety 
of other factors [8], and we note that some previous PPI-based identification studies have indeed incorporated 
some of these factors in experimental classification tests [11]. 
 
Walking speed, in particular, would be interesting to consider; although general foot morphology does not 
change with speed, and thus binary features (Section 3.4) should be largely unaffected, the non-trivial pressure 
redistributions associated with walking speed [47] would likely affect subject separability, and it would be 
prudent to empirically define the walking speed limits that retain separability. However, since we can easily 
measure walking speed using cameras, and/or using foot-contact duration as a proxy, it may be possible to 
algorithmically compensate for walking speed variability, for example by introducing temporal normalisation, or 
by scaling pressures in certain foot regions. 
 
Although PPI data can easily change, many gait-recognition applications involve desired identification, 
situations in which an individual wants to be identified (e.g. automated airport immigration control). For other 
applications it may be necessary to test the current algorithms on experimentally manipulated gait. Finally, we 
presently considered only particular testing/training ratios in our model assessment. It would be prudent to 
systematically explore testing/training ratios, with more images for each subject, to find the optimum number of 
images one should obtain if implementing a real-world plantar pressure-based identification scheme. 
 
 
4.6  Conclusion 
Normal self-paced unshod walking produced a high-quality plantar pressure-derived biometric, and the present 
identification implementation yielded classification rates of 99.6% in N=104 individuals. These results were 
largely driven by spatial image registration and, to enable finer subject differentiation, automated dimensionality 
reduction. Since plantar pressure data are highly unique amongst individuals, and since data can be easily 
collected and processed using commercial in-floor hardware, plantar pressure-based identification appears to 
have strong potential for a variety of security and health applications. 
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TABLES 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.  Subject characteristics. 
 

 Female Male Follow-up 
N 64 40 10 
Age (years) 30.0   (10.8) 34.4  (8.6) 36.7  (8.0) 
Mass  (kg) 63.2  (8.2) 80.6  (11.1) 67.6  (14.0) 
Height  (cm) 169.4  (6.3) 182.6  (7.1) 175.3  (9.7) 
BMI  (kg/cm2) 22.0  (2.4) 24.1  (2.2) 21.9  (2.7) 
Sport (hours/week) 3.2 a  (2.2) 4.2  (3.1) 3.3  (1.8) 

 
(Averages, with st.dev. in parentheses. 'Follow-up' data included five females and five males; main dataset: Spring 2009, two follow-up 
subjects: 1.5 years later, eight follow-up subjects: 1.5-5.0 years before. aData for two female subjects were unavailable.) 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.  Spatial alignment methods. 
 

# Method Description Ref 

1 None No pre-processing (only image cropping 
and zero-padding) × 

2 Decorr Decorrelation (principal axis 
transformation) [18] 

3 RegMunCont Register to (flipped) Münster mean [9,21] 
4 RegIndepMean Register to independent ipsilateral mean " 
5 RegIndep1 Register to independent arbitrary subject 1 " 
6 RegIndep2 Register to independent arbitrary subject 2 " 
7 RegIndep3 Register to independent arbitrary subject 3 " 
8 RegIndep4 Register to independent arbitrary subject 4 " 
9 RegIndep5 Register to independent arbitrary subject 5 " 

 



 
 
 
 
 
 
 
 
 
Table 3.  Pre-feature descriptions. 
 

# Pre-feature Units Description Definition 

1 P100 kPa 100th percentile (spatial maximum) 
P𝑝(𝑥, 𝑦) ≡ 𝐼(𝑘,𝑦, 𝑘) + 

𝑁
100

(𝑝 − 𝑝𝑘)[𝐼(𝑥, 𝑦,𝑘 + 1) − 𝐼(𝑥, 𝑦, 𝑘)] 

 
where   𝑝𝑘 ≤ 𝑝 ≤ 𝑝𝑘+1 

2 P90 kPa 90th percentile " 
3 P80 kPa 80th percentile " 
4 P70 kPa 70th percentile " 
5 P60 kPa 60th percentile " 
6 P50 kPa 50th percentile " 

7 PTI kPa·s Pressure-time integral 𝑃𝑇𝐼(𝑥, 𝑦) = ෍𝐼(𝑥, 𝑦, 𝑡)
𝑡

 

8 Tfirst s Time to first contact (from heel strike) 𝑇𝑓𝑖𝑟𝑠𝑡 (𝑥, 𝑦) = min
𝐼(𝑥 ,𝑦 ,𝑡)>𝜀

𝑡 

9 Tmax s Time to maximum (from heel strike) 𝑇𝑚𝑎𝑥 (𝑥, 𝑦) = arg max
𝑡

𝐼(𝑥, 𝑦, 𝑡) 

10 CD s Contact duration 
𝐶𝐷(𝑥, 𝑦) = ෍𝑓(𝑥, 𝑦, 𝑡)

𝑡

 

where   𝑓(𝑥, 𝑦, 𝑡) = ൜1 if 𝐼(𝑥, 𝑦, 𝑡) > 𝜀
0 otherwise

� 
 
Here I(x,y,t) is the image time series, p denotes percentile, k indexes  the  ordered  observations  of  a  particular  pixel’s  time  series,  pk is the 
percentile of the kth ranked observation, N is the number of observations, and ε is a pressure threshold (manufacturer-set to ε =5 kPa in 
the current dataset) ). Note: in the percentile equation k is not a time index, but rather indexes sorted observations, and k may be different 
for  each  pixel’s  time  series. 
 
 



 
 
 
 
 
 
 
 
 
 
Table 4.  Dimensionality reduction methods. 
 

# Method Description Ref 
1 None No reduction × 
2 LE Laplacian eigenmaps [24] 

3 NCSL Normalised spectral clustering 
with symmetric Laplacian [24] 

4 KPCA Kernel principal component 
analysis [25] 

5 LLE Locally linear embedding [26] 
 



 
 
 
 
 
 
 
 
 
 
Table 5.  Semi-factorial analysis: alignment and single pre-features, left foot. 
 

Alignment Pre-feature 
 P100 P90 P80 P70 P60 P50 PTI Tfirst Tmax CD 
None 94.6 94.8 90.6 85.2 72.9 9.8 94.0 88.5 81.0 93.7 
Decorr 93.1 93.7 91.0 85.4 73.3 2.1 92.9 79.0 66.9 88.3 
RegMunCont 98.8 98.8 98.5 96.0 86.9 2.1 98.1 89.6 79.0 94.0 
RegIndepMean 92.9 93.3 93.7 90.8 79.4 1.5 92.9 81.0 71.2 89.6 
RegIndep1 99.0 99.2 99.2 97.5 87.1 1.0 99.6 87.7 77.5 95.8 
RegIndep2 96.2 96.2 95.4 93.1 78.1 1.3 96.0 85.0 74.0 91.2 
RegIndep3 93.5 94.2 94.2 91.0 82.7 1.3 94.2 85.6 72.7 91.0 
RegIndep4 96.7 96.9 95.4 93.1 86.9 3.8 96.7 87.3 73.3 94.0 
RegIndep5 95.8 95.8 96.0 92.5 86.0 2.9 96.0 89.4 77.9 93.8 

 
(Data are classification rates, %. Data reduction: LLE. The alignment methods and features yielding CR>90% are highlighted in gray.) 
 
 



 
 
 
 
 
 
 
Table 6.  Semi-factorial analysis: pre-processing and dimensionality reduction methods. 
 
    (a)  104-fold cross-validation 

Foot Pre-processing Dimensionality reduction 
  None LE NCSL KPCA LLE 
Left None 91.4 95.4 95.6 68.7 95.8 

Decorr 92.3 96.2 96.0 67.9 95.8 
RegMunCont 99.0 99.4 99.4 89.8 99.4 
RegIndepMean 94.2 94.2 94.0 88.9 94.0 

Right None 92.9 94.8 94.0 68.3 94.6 
Decorr 90.2 93.9 94.0 63.4 93.5 
RegMunCont 99.2 99.8 99.8 91.3 99.8 
RegIndepMean 95.0 93.7 93.9 87.7 94.2 

 
    (b) Leave-one-out cross-validation 

Foot Pre-processing Dimensionality reduction 
  None LE NCSL KPCA LLE 
Left None 91.4 95.4 95.6 68.7 95.6 

Decorr 92.5 96.2 95.8 67.9 95.8 
RegMunCont 99.0 99.4 99.4 89.8 99.4 
RegIndepMean 94.2 94.4 94.0 88.9 94.2 

Right None 93.1 95.0 94.6 68.1 94.8 
Decorr 90.4 93.9 93.7 65.2 93.5 
RegMunCont 99.2 99.8 99.8 91.4 99.8 
RegIndepMean 94.2 94.4 94.4 88.9 94.2 

 
 
(Data are classification rates, %. Combined pre-features: P100 and P80. The best-performing methods are highlighted.) 
 
 
 
 



FIGURE CAPTIONS 
 
 
 
 
Figure 1.  Description of plantar pressure data for a single step. (a) Pressure image time series; percentages 
indicate normalised time (% stance).  (b) Pixel time series; dark grey, black, and light grey trajectories indicate 
pixels whose maxima were reached in the first, second, and final thirds of stance phase, respectively.  (c) Pre-
features for an example pixel time series (see Table 2 for variable descriptions). (d) Pre-features, when computed 
across all pixels. 
 
 
 
Figure 2.  Maximal pressures (P100) for the chronologically first twelve subjects; averaged across five trials. 
 
 
 
Figure 3.  Spatial alignment example, first subject. Top, middle, and bottom rows depict the original, 
decorrelated, and registered images, respectively; here the registration template was RegMunCont (Table 2). The 
thick dark outline depicts the cross-trial mean. 
 
 
 
Figure 4.  Classification rate (CR) for all 104 subjects using the P100 pre-feature. See Tables 3 and 4 for 
alignment and dimensionality reduction and alignment method descriptions. 
 
 
 
Figure 5.  Classification rate (CR) as a function of embedding dimension (alignment: RegMunCont, pre-feature: 
P100, reduction: LLE). 
 
 
 
Figure 6.    ‘Follow-up’  test  results.  (a-b) Number of correctly classified images (out of five) for the left and right 
feet (light and dark bars, respectively) and for all ten follow-up  subjects  (s01…s10). Numbers in the white boxes 
indicate the number of years between collection of the follow-up and main datasets. (c) Left foot P100 images 
for  subject  6,  mean  across  five  trials.  The  ‘Target’  image  is  from  the  main  dataset. 



Figure 1.  Description of plantar pressure data for a single step. (a) Pressure image time series; percentages indicate 
normalized time (% stance).  (b) Pixel time series; dark grey, black, and light grey trajectories indicate pixels whose 
maxima were reached in the first, second, and final thirds of stance phase, respectively.  (c) Pre-features for an example 
pixel time series (see Table 2 for variable descriptions). (d) Pre-features, when computed across all pixels.



Figure 2.  Maximal pressures (P100) for the chronologically first twelve subjects; averaged across five trials.



Figure 3.  Classification rate (CR) for all 104 subjects using the P100 pre-feature. See Tables 3 and 4 for alignment and 
dimensionality reduction and alignment method descriptions.



Figure 4.  Classification rate (CR) as a function of embedding dimension (alignment: RegMunCont, pre-feature: P100, 
reduction: LLE).



Figure 5.  ‘Follow-up’ test results. (a-b) Number of correctly classified images (out of five) for the left and right feet (light 
and dark bars, respectively) and for all ten follow-up subjects (s01…s10). Numbers in the white boxes indicate the number 
of years between collection of the follow-up and main datasets. (c) Left foot P100 images for subject 6, mean across five 
trials. The ‘Target’ image is from the main dataset.


